国产青榴社区91精品,久久成人精品免费播放,久久精品人人做人人试看

Home> Market activity > Achievements > article shows > article details

A comparative transcriptomic and proteomic analysis of hexaploid wheat’s responses to colonization by Bacillus velezensis and Gaeumannomyces graminis both separately and combined

2019-08-06

Abstract:

Tritrophic interactions involving a biocontrol agent, a pathogen and a plant have been analyzed predominantly from the perspective of the biocontrol agent. To explore the adaptive strategies of wheat in response to beneficial, pathogenic and combined microorganisms, we performed the first comprehensive transcriptomic, proteomic and biochemical analysis in wheat roots after exposure to Bacillus velezensis CC09 (Bv), Gaeumannomyces graminis var. tritici (Ggt) and their combined colonization, respectively. The transcriptional/translational programming of wheat roots inoculated with beneficial Bv showed mild alterations compared to that of pathogenic Ggt. However, the combination of Bv and Ggt activated a larger transcriptional/translational program than for each single microorganism, but the gene expression pattern was similar to that of individual infection by Ggt, suggesting a prioritization of defense against Ggt infection. Surprisingly, pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity made wheat pre-treated with Bv more sensitive to subsequent Ggt infection. Additionally, Bv triggered a salicylic acid (SA)-dependent mode of induced systemic resistance that resembles pathogen-induced systemic acquired resistance (SAR). Wheat plants mainly depend on SA-mediated resistance, and not that mediated by jasmonic acid (JA), against the necrotrophic pathogen Ggt. Moreover, SA-JA interactions resulted in antagonistic effects regardless of the type of microorganisms in wheat. Further enhancement of SA-dependent defense responses such as lignification to the combined infection was shown to reduce the level of induced JA-dependent defense against subsequent infection with Ggt. Altogether, our results demonstrate how the hexaploid monocot wheat responds to beneficial/pathogenic microorganisms and prolongs the onset of ‘take-all’ disease through modulation of cell reprogramming and signaling events.


Text link :

 https://apsjournals.apsnet.org/doi/abs/10.1094/MPMI-03-19-0066-R 

主站蜘蛛池模板: 徐水县| 张家口市| 镇原县| 城口县| 正安县| 杭锦旗| 虹口区| 班玛县| 莒南县| 玉林市| 唐海县| 松溪县| 仁化县| 视频| 嘉善县| 布拖县| 武邑县| 抚松县| 炉霍县| 固原市| 桓台县| 清原| 桂平市| 蕲春县| 天祝| 靖州| 射阳县| 南城县| 伊吾县| 离岛区| 治县。| 蕲春县| 涞源县| 彭州市| 嵊州市| 泾阳县| 江华| 类乌齐县| 高陵县| 鲁山县| 财经|